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Abstract

The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes

Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for

principal investigators of microgravity experiments. Principal investigators need a thorough

understanding of data analysis techniques so that they can request appropriate analyses to best interpret

accelerometer data. Accelerometer data sampling and filtering is introduced along with the related

topics of resolution and aliasing. Specific information about the Orbital Acceleration Research

Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time

domain data analysis techniques are discussed and example environment interpretations are made using

plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square

acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms,

and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory

and windowing is provided along with specific analysis techniques and data interpretations. The

frequency domain analyses discussed are power spectral density versus frequency, cumulative root-

mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third

octave band root-mean-square acceleration versus frequency, and power spectral density versus

frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center

accelerometer data and related information using the internet are provided.
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I. Introduction

The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research

Center supports principal investigators of microgravity experiments as they evaluate the effects of

varying acceleration levels on their experiments. Upon request, the PIMS team provides acceleration

data and data analysis as well as ancillary information pertinent to the microgravity environment

measured during experiment operations. PIMS works primarily with data collected by the Orbital

Acceleration Research Experiment (OARE) on Columbia and data collected by the Space Acceleration

Measurement System (SAMS) on all of the Orbiters and on the Mir space station. Data and information

exchange can occur in near real-time during Orbiter missions and before or after Orbiter and Mir

missions. Data analysis provided prior to a mission may be used by experimenters and mission planners

for experiment timeline planning. Post-mission acceleration data analysis results may be useful in the

interpretation of experimental results.

While time series analysis is not a new science, its varied approaches to the interpretation of

underlying phenomena may be overwhelming to the experiment investigator who is more interested in

analyzing his experimental results than in knowing how to calculate and use a Fourier transform. In this

paper, we have attempted to provide an overview of several different data analysis techniques that the

PIMS team currently uses for acceleration data. By giving examples of data interpretation using the

different analysis techniques, we hope to make it easier for the experimenter to determine what type of

analysis to use or to request from the PIMS group. Section 2 describes the different types of data

analysis that PIMS currently provides to users. Section 3 provides information about how to obtain

PIMS data products and support.

2. Data Analysis and Presentation Techniques

In 1990, Rogers, Alexander, and Snyder prepared a report entitled "Analysis Techniques for Residual

Acceleration Data" In the introduction of that report, they stated:

There are various aspects of observational data that may be of interest to an

investigator, e.g., mean, variance, and minimum and maximum values. Observational
data such as... accelerometer data are recorded as either continuous time functions

or discrete time series. While statistics such as those mentioned above can be

obtained from data in this form, additional information can often be obtained by

looking at the data from a different perspective, such as can be obtained by
transformation of data into a different domain or into different coordinate axes. Of

particular interest to us is the analysis of residual acceleration data collected in

orbiting space laboratories. A thorough understanding of such data and the ability to

manipulate the data will allow the characterization of orbiters so that investigators can
better understand the results of low-gravity experiments. [ 1]

That paper presented many details about Fourier analysis, but did not provide many specifics of how

to use frequency domain representations of acceleration data to gain insight into the microgravity

environment of orbiting space laboratories. The frequency analysis techniques discussed herein are
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mainly extensions of the Fourier analysis and coordinate transformation methods discussed in [ 1]. Many

of the current methods used were derived based on experimenters' requests for a particular piece of

information. While there are limits to what information can be obtained from acceleration time series,

these basic techniques have given us a rather thorough understanding of the microgravity environment of

Earth-orbiting laboratories.

2.1 Data Sampling, Frequency Limits, Resolution, and Aliasing

2.1.1 General Notes

In the analysis of time series, certain restrictions are imposed by the length of the data window being

analyzed and by the sampling rate, fs, used when digitizing continuous data. For a time series segment

of length T seconds (N total points), the fundamental period of the segment is assumed to be T, even

though the series is not necessarily periodic. This periodicity assumption is intrinsic to the calculation of

the Fourier transform, which is the basis for all spectral analysis discussed in this paper. The finest

frequency resolution obtainable is dF=fs/N. A lower value of dF is considered better resolution than a

higher value of dE As seen from the expression above, for a given sampling rate, the frequency

resolution improves as the number of data points analyzed increases (that is, as a longer segment of data

is analyzed). However, there is a trade-off between frequency resolution and spectral variance.

Improved frequency resolution comes at the expense of increased spectral variance. The longer the time

frame is, the greater the possibility that the spectral content has varied within the segment considered.

This is especially true for non-stationary data such as these acceleration measurements recorded on

dynamic microgravity platforms. The desire to perform a frequency analysis over a relatively long time

period can be achieved by dividing the period into several equal-length blocks and then computing the

power spectral density (PSD) of each block. The PSDs for each block can then be laid out in the form of

a spectrogram to show intensity versus frequency versus time or they can be averaged to form a single

PSD plot, representative of the longer time period. PSDs, spectrograms, and spectral averaging will be
discussed later in this document.

Two pieces of information define one segment of time series data: the length of the segment, T, and

the sampling interval, dT, used in the acquisition of data. The sampling interval used must be

appropriate for the data of interest because it determines the highest frequency component which can be

faithfully reconstructed in spectral calculations. This value, fN, is known as the Nyquist frequency where

fN = l/(2dT) = N/(2T)=fJ2. Spectral analysis of a time series as described above is confined to the

frequency limits 0 < f < fN- While sampling theory dictates that the data sampling rate be at least two

times the highest frequency present in the phenomenon being studied, SAMS typically samples at five

times the highest frequency of interest. Attenuation of frequencies below the Nyquist is achieved by

means of an anti-aliasing lowpass filter.

From a signal processing point of view, selection of the anti-aliasing lowpass filter's cutoff frequency

should be based on the investigator's concern about spectral components less than or equal to the

selected cutoff frequency, ft. This does not mean that structures and materials at the measurement

location will not be subjected to the "neglected" portion of the acceleration spectrum above the cutoff

frequency. Rather, it was decided a priori that the experiment is not significantly sensitive to these

2
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higher frequency components. Despite lowpass filtering of the data prior to digitization, the acceleration

spectrum may contain spectral components above the Nyquist frequency which are strong enough that

they are not sufficiently attenuated. This leads to high frequency components being folded-over or

aliased to lower frequency artifacts in the frequency regime below fN. This is illustrated in Figures I and

2. While some aliasing is manifest on occasion in SAMS data, it is not commonplace and is typically

easy to identify, as seen in Figure 3.

2.1.2 OARE and SAMS Sampling and Filtering

OARE data are sampled at a rate of 10 samples per second following application of a 0.9 Hz lowpass

filter to the XOARE axis data and a 0.1 Hz lowpass filter to the YOARE and ZOARE axis data. The

technology of the OARE system allows interpretation of the microgravity environment for the frequency

range from 0 Hz up to 1 Hz with a precision of 0.003 micro-g for XOARE and from 0 Hz up to 0.1 Hz

with a precision of 0.0046 micro-g for YOARE and ZOARE •

The triaxial sensor heads on a SAMS unit can be set to record data at several sampling rates ranging

from 12.5 to 500 samples per second, see Table 1. The SAMS digitizes the data after applying an anti-

aliasing lowpass filter with a 140 dB/decade rolloff. As mentioned earlier, the filter cutoff is typically

set to be 1/5 the sampling rate. Other sampling rate / filter cutoff configurations may be set based on

experimenter requests. Unidentified offset bias sources lead to uncompensated quasi-steady signals in

the SAMS data. These signals can be removed from the SAMS data by a simple de-meaning of the

signal prior to the application of any other analysis technique. This de-meaning procedure is not

performed during the SAMS data reduction. Therefore, the compensated SAMS data, distributed via
internet file server and CD-ROM, still contain this offset bias uncertainty. It is left to the user of the data

to remove this artifact. Based on this and the not-fully-quantified noise floor of the SAMS, these data

are usually used to interpret the microgravity environment for the frequency range from 0.01 Hz (low

end for all sampling rates) up to 100 Hz (high end for fs=500 samples per second).

Table 1. SAMS

f, (nz)

2.5

filter cutoffs and sampling frequencies

f, (nz)

12.5

100.0

5.0 25.0

5.0 50.0

10.0 50.0

25.0 125.0

50.0 250.0

100.0 250.0

500.0

Because of the inherent differences between OARE and SAMS data, some of the analysis techniques

discussed below are more applicable to data from one system than the other. The particular processing

technique used depends on the type of information desired. Examples of data interpretation using each

analysis technique are provided.
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2.2 Time Domain Analysis

The time domain data analysis techniques are acceleration versus time, interval average acceleration

versus time, interval root-mean-square (RMS) acceleration versus time, quasi-steady three-dimensional

histogram (QTH) of acceleration data, trimmean filtered (TMF) acceleration versus time, and prediction

of quasi-steady levels at different locations. All of these options, except the histogram, can be presented

on a per axis basis or as a vector magnitude. The quasi-steady histogram and trimmean filtered

acceleration calculations are usually prepared using OARE data. Table 2 provides an overview of the

time domain analysis techniques discussed here.

Analysis Technique

Acceleration versus
Time

Interval Average
Acceleration versus
Time

Interval RMS
Acceleration versus
Time

Trimmean
Acceleration versus
Time

Quasi-steady
Three-dimensional

Histogram

Mapping of OARE
Data

Table 2.

Units

g or fraction of g

g or fraction of g

g or fraction of g

g or fraction of g

percentage of
time and g or
fraction of g

g or fraction of g

Data Typically
Used

Time domain analysis techniques

Use

OARE

SAMS

SAMS

SAMS

OARE

OARE

OARE

precise accounting of variation of
acceleration magnitude as a function
of time

indication of net accelerations lasting
for time period > interval parameter

measure of oscillatory content in data

smooth data and reject transient,
higher magnitude contributions

summarize acceleration vector

magnitude and direction

predict quasi-steady environment at
locations other than OARE sensor

Figure #

4,5

6,7

9,11

10

11

2.2.1 Acceleration versus Time

Acceleration magnitude versus time plots show acceleration in units of g versus time. Among the

time domain plots discussed in this document, this one yields the most precise accounting of the

variation of acceleration magnitude as a function of time. The length of time represented in a plot is

usually determined by the focus of the investigation. The sampling rate of the data also influences the

plot length. Useful displays can be produced from a couple hours' worth of OARE and lower frequency

SAMS data, while SAMS data collected at 25 samples per second or more can best be displayed for

periods on the order of seconds or minutes. If a data sampling rate is 125 samples per second, a ten

minute plot will have 75000 points. Printing these data with a standard printer at 600 dots per inch

requires a 125 inch long paper [2]. This situation is typically avoided, because acceleration versus time

plots of SAMS data are usually used to investigate the microgravity environment related to transient or

short-lived oscillatory events such as thruster firings or the start-up or shut-down of vibratory equipment.
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Figure 4 is an example of SAMS data collected in the Spacelab module during the STS-65 mission.

As indicated on the plot, the data were collected with SAMS Triaxial Sensor Head (TSH) C at a rate of

500 samples per second after a 100 Hz lowpass filter was applied to the signal. The data are plotted with

respect to the Orbiter structural coordinate system axes. The mean value of each axis is calculated and

this value is then subtracted from each data point prior to plotting. The "Original Mean" of the data is

indicated to the right of each plot. The data shown in this plot represent the microgravity environment of

the Spacelab module during normal experiment operations.

Figure 5 is an example of OARE data collected on the keel bridge of Columbia during the STS-78

mission. The data shown are plotted in Orbiter body coordinates. Note the units of acceleration differ

here from the previous SAMS plot in scale. The units here are micro-g. The designator "raw" denotes

that this is the acceleration data as recorded at 10 samples per second. During the twenty hours of the

mission represented here, four activities of note are captured in this plot. The crew on STS-78 worked

on a single shift [3]. The reduction in acceleration levels approximately eleven hours into this plot

corresponds to a crew sleep period. Evident throughout the figure, but most prevalent during the sleep

period is the signature of the regular vernier reaction control system jet firings to maintain Orbiter

attitude. Between hours two and three in the figure, a water dump caused increased acceleration levels,

particularly on the Yb- and Zb-axes. At the end of the water dump, an attitude maneuver was performed.

It is difficult to differentiate this activity from the water dump on this plot.

2.2.2 Interval Average Acceleration versus Time

A plot of the interval average acceleration in units of g versus time gives an indication of net

accelerations which last for a number of seconds equal to or greater than the interval parameter. Shorter

duration, high amplitude accelerations can also be detected with this type of plot. However, the exact

timing and magnitude of specific acceleration events cannot be extracted. The interval average

acceleration for the x-axis is defined as

x,,,.#,= ---_x_k_ils_+i__ k = 1,2..... .

Corresponding expressions for the y- and z-axis data can be combined to form the interval average

acceleration vector magnitude as follows:

X 2 2 2accel,,_, = _/ ,,v_ + Y,,_, + z,,v_ •

Averaging tends to smooth the appearance of the data and allows longer periods of time to be plotted

on a single page. This type of display is useful for identifying overall effects of thruster firings and other

activities that tend to cause the mean acceleration levels to shift. Although the absolute value of SAMS

data is not valid due to the offset bias, relative shifts in the mean levels are valid. Subtle shifts in the dc

level are best captured using an interval average plot. Figures 6 and 7 are examples of SAMS data with

different interval averaging applied. As shown in Figure 6, a simultaneous waste and supply water dump

that is not readily apparent in SAMS acceleration versus time plots, but that was identified through

mission timeline information, becomes easily noticeable when we look at the data with a 100 second
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intervalaverage.Notethethreeon/off cyclesof thewastewaterdumpthatoccurduringacontinuous
supplywaterdumpfrom 60to 140minuteson theYo-axisplot.

In Figure7, onesecondintervalaveragingwasappliedto STS-65data. Note thatthereis achangein
theaccelerationsignalcharacterapproximately450secondsinto thedisplay,mostevidenton the
Zo-axis.This changeis causedby thedutycycleof theLife SciencesLaboratoryExperiment(LSLE)
refrigerator/freezer[3,4]. TheLSLE hasa compressorthatoperateswith a nominal22Hz frequency
vibration. Thecompressormotorcycledonandoff at regularintervalsthroughoutthemission. The
decreasein accelerationlevelsseenin Figure7 is dueto thecycling off of thecompressor.

2.2.3 Interval Root-Mean-Square Acceleration versus Time

A plot of the interval root-mean-square acceleration in units of g versus time gives a measure of the

oscillatory content in the acceleration data. For the period of time considered, this quantity gives an

indication of the time-averaged power in the signal due to purely oscillatory acceleration sources. The
interval RMS acceleration for the x-axis is defined as

(x,k 2

Corresponding expressions for the y- and z-axis data can be combined to form the interval RMS

acceleration vector magnitude as follows:

._/ 2 2accelRMs ' 2 + YRMS,+"- XRMSt ZRMSt •

Because the interval RMS reduces the amount of data points that represent a period of time, this

display allows longer periods of time to be plotted on a single page than acceleration versus time

displays. This data representation is useful for identifying changes in background acceleration levels

caused by the initiation or cessation of activities such as crew exercise or fan operations.

Figure 8 is an example of SAMS TSH C data from STS-65 with a one second interval RMS

operation applied. Note that there is a change in the acceleration signal character approximately 450

seconds into the display, clearly evident on all three axes. This is the same time period shown using

interval averaging in Figure 7. The change in the microgravity environment due to the LSLE

refrigerator/freezer compressor is more clearly indicated on the interval RMS plot as expected due to its

oscillatory nature.

2.2.4 Trimmean Acceleration versus Time

A trimmean filter is applied to raw OARE data to reject transient, higher magnitude accelerations.

The objective is to smooth the data to achieve an estimate of the quasi-steady accelerations experienced

on Columbia. The TMF utilizes a sliding window to operate on a segment of data of pre-defined length.

The sliding window operates such that a segment of the Nth window of data is included in the (N+l)th

6
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window,resultingin someportionof databeingconsideredin two consecutiveTMF operations.For
mostapplications,PIMSemploystwo implementationsof theTMF sliding window: 1)500sample
windowof dataevery25secondsand2) 3000samplewindowof dataevery8 seconds.Eachapplication
of theTMF ranksthecollecteddatain orderof increasingmagnitudeandmeasuresthedepartureof the
distributionfrom aGaussiandistribution. A parameter,Q, is anestimateof theextentto whichthe
quasi-steadyaccelerationmeasurementsarecontaminatedby highermagnitudedisturbances(suchas
thrusterfirings andcrewactivity). TheQ-parameteris usedto choosetheamountof datato betrimmed
or discardedfrom thecurrentwindow of data.The meanof theremainingdatais calculatedandthis
valueis assignedto theinitial time of thewindowof databeinganalyzed.Furtherinformationcanbe
foundin [5].

As with intervalaverageandintervalRMScomputations,theTMF reducesthenumberof datapoints
associatedwith agivenperiodof time, sothatlongerperiodscanbedisplayedon asingleplot compared
to accelerationversustime displays.This typeof analysisis goodfor highlighting low magnitude,
slowlyvaryingcomponentsof the microgravityenvironmentsuchaschangesin theaerodynamicdrag
dueto atmosphericdensityvariations.

Figure9 is anexampleof OARE datawith atrimmeanfilter appliedto 50secondsof dataevery25
seconds.Comparingthisplot to Figure5, it canbeseenthatthetransientdisturbancesrecordedin the
rawdata,includingtheregularjet firings,areremovedby theTMF operation.Thedifferencebetween
crewsleepandactiveperiodsis still obvious,asis thewaterdumpoperation.Theattitudemaneuver
threehoursinto theperiodis moreclearin theTMF datathanin therawdataplot.

2.2.5 Quasi-steady Three-dimensional Histogram

The quasi-steady three-dimensional histogram analysis displays a summary of acceleration vector

magnitude and alignment projected on three orthogonal planes. These can be top, front, and side views

of the Orbiter, or orthogonal planes defined by an experiment configuration [6]. The time series is

analyzed using a two-dimensional histogram method where the number of times the acceleration vector

magnitude falls within a two-dimensional bin is counted. This is done for each combination of the three

orthogonal axes: XY, XZ, and YZ. This count is then divided by the total number of points in the

analysis to normalize the result, making comparisons of results amongst several analyses more

meaningful. The percentage of time a particular acceleration level occurs is plotted as a color or shade

of grey. For the color version, areas showing colors toward the red end of the colorbar indicate a higher

number of occurrences of the acceleration vector magnitude falling within that area. Conversely, areas

showing colors toward the blue end are indicative of a lower number of occurrences. When comparing

QTH plots from separate time periods, care should be taken to check the colorbar for which colors

correspond with what percentage of time values. Because these can differ among plots, colors may not

be directly comparable.

This type of plot provides a summary of the quasi-steady acceleration vector magnitude and

orientation for the total time period analyzed. Exact timing of acceleration events cannot be extracted.

It is useful for obtaining an overview of the influence of quasi-steady accelerations during specific

scenarios such as a particular Orbiter attitude or water dump operation.
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Figure 10 shows a quasi-steady three-dimensional histogram representation of the entire STS-78

mission. The roughly oval, dark blue areas on the three planes of the Orbiter represent the variation of

the quasi-steady environment during the mission. The two clusters of color within the ovals are

representative of the quasi-steady microgravity environment during the two attitudes in which the

Orbiter was maintained during the mission [3, 6].

2.2.6 Mapping of OARE Data to Alternate Locations

Several components of the quasi-steady microgravity environment are easy to predict based on the

location being studied, the location of the Orbiter center of gravity (CG), and the Orbiter rotational rates

and angles. The atmospheric drag is assumed to be relatively constant for all locations within the

Orbiter (this is a rigid-body assumption). Using this assumption, quasi-steady acceleration data

collected by OARE can be mapped to other locations in the Orbiter. This mapping is a prediction of

what the microgravity environment would be at the alternate location, knowing the acceleration levels at

OARE, the distance between OARE and the Orbiter CG (leading to gravity gradient effects, agOARE), the

distance between the CG and the location of interest (leading to gravity gradient effects, agg,_w), and the

Orbiter body rotational rates during the period of interest (leading to rotational effects, am) [7, 8].

The data are mapped from the OARE location to the Orbiter CG

aCG = aOARE- aggOARE- arotOAR E

and subsequently from the Orbiter CG to the new location

anew=acG+aggnew+arotnew

This mapping is typically performed in conjunction with the application of a trimmean filter,

therefore effects of rotational rate and angle data sampling are smoothed out. Figure 11 shows the data

displayed in Figure 9 mapped from the OARE location to the location of the Advanced Gradient Heating

Facility in the Spacelab module [3]. Note that the sawblade effect caused by the attitude-maintenance

jet firings is more prevalent in the Xb-axis at this location because it is further removed from the Orbiter

CG (along the Xb-axis) than the OARE location.

2.3 Fourier Transform Theory and Windowing

Transformation of data to the frequency domain is done to gain more insight about the microgravity

environment and to help identify acceleration sources. Analyses that transform data into the frequency

domain result in displays of acceleration power spectral density versus frequency, RMS acceleration

versus frequency, cumulative RMS acceleration versus frequency, one third octave band RMS

acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram).

Any of these frequency domain analysis techniques typically performed on SAMS data can be applied to

raw OARE data, if desired.
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Fouriertransformationis acommonmeansof studyingtimeseriesdatain thefrequencydomain.
FollowingFouriertheory,afunctionf(t), with fundamentalperiod2nandsatisfyingDirichlet conditions,
canberepresentedby aninfinite seriesof sinusoids,aFourierseries[1,9-12]. DiscreteFourier
transformationisaway to calculatetheFouriercoefficientsof agiventime series.For thetimeseriesIn,
n--0,1,2..... N-1,thediscreteFouriertransformof fnis

N-I

F m -- ____fne -j2xnm/N

n=0

m =0,1,2 ..... (N- 1).

Fast Fourier Transform methods are designed to efficiently compute the values of Fm shown above.

The fundamental information obtained from Fourier transformation is the relative magnitudes of the

various sinusoidal signals that compose the time series. A knowledge of the predominate disturbing

frequencies in the microgravity environment is often of interest to experiment investigators. The Fourier

transformation is the basis for the power spectral density and other frequency domain analyses discussed

in the following section.

When performing frequency domain analyses of data, different types of filters can be applied to

achieve different effects. For example, lowpass filters can be applied to accelerometer data to remove

higher frequency disturbances that an investigator knows will not affect the experimental results.

Bandpass filters can be employed to focus an analysis on a specific, typically narrow, region of the

acceleration spectrum. Comb filters enable rejection of a specific frequency and its harmonics. The

choice of filter and design of appropriate filter parameters permits the desired manipulation of the data

set. No type of filtering after data collection, however, can remove the aliasing effects of improperly

sampled data.

In addition to the type of filtering mentioned above, a weighting function can be applied to the time

series before spectral analysis is performed to address the problem of spectral leakage. Spectral leakage

will arise in the analysis of periodic data with period Tp if the length of the record being analyzed, T, is

not an integer number of Tp periods as assumed in Fourier theory. In order to suppress spectral leakage,

it is common to introduce a weighting function that tapers the time series data to eliminate

discontinuities at the beginning and end of the record. In acceleration data analysis, a Hanning window

is typically used to reduce spectral leakage and thus show features more clearly [ 10-12]. Unless

otherwise stated, all the frequency domain analysis displays shown here have had a Hanning window

applied. When no windowing is applied to a time series, it is often said that a boxcar window was used.

This offers no signal tapering and thus has no effect on spectral leakage.

As demonstrated in Figure 12, when a non-integer number of periods is used to compute the PSD

using a boxcar window (the dashed curve), the smearing of a strong spectral component, in this case the

Ku-band antenna at about 17 Hz, over the surrounding frequency bins can render close, somewhat

weaker components, like the one at 16.68 Hz, virtually undetectable. For comparison, see the solid line

in Figure 12 for a PSD of the same dataset using a Hanning window. Notice the spectral peak at 16.68

Hz is now clearly evident.
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2.4 Frequency Domain Analysis

Table 3 provides an overview of the frequency domain analysis techniques discussed here.

Analysis Technique

Power Spectral
Density versus
Frequency

Cumulative RMS
Acceleration versus

Frequency

Units

Table 3. Frequency domain analysis techniques

Use

g_lHz

Data Typically
Used

SAMS

SAMSgRMS

estimate of distribution of energy with
respect to frequency

quantifies contributions of spectral
components to overall RMS
acceleration level for time period
studied in cumulative fashion

Figure #

12, 13,
14

15, 16

RMS Acceleration gRMS SAMS quantifies contributions of spectral 17
versus Frequency components per frequency bin

Spectrogram g z/I-Iz SAMS 3, 20road map of how acceleration signals
vary with respect to both time and
frequency

2.4.1 Power Spectral Density versus Frequency

The power spectral density is computed directly from the Fourier transform of a time series as

indicated here [ 1, 11 ].

For even N:

[ 2[F(m)l 2

ovf 
PSD(m)=[lF(m)[Z

tOUr,

and for odd N:

[units2/Hz] for m =

[units2/Hz] for m =

l, 2 ..... (N/2) - 1

0 and m = (N/2)

PSD(m) =

2lF(m)l 2

NUL

[F(m)l2

NU4

[units2/Hz] for m

[units2/Hz] for m

= 1,2 ..... (N- 1)/2

=0

where

1 N-1

U=_- ___Wn 2
n=O

10
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is the compensation factor [12] used to account for the attenuation of the signal imposed by the

weighting function, w,, applied to suppress spectral leakage. The PSD has units of (units of original

function)VHz. For SAMS data, these units are g2/Hz. This method for computation of the PSD is

consistent with Parseval's Theorem, which states that the RMS value of a time signal is equal to the

square root of the integral of the PSD across the frequency band represented by the original signal [ 11]:

XRM S _T!X2(t)dt= PSD(f)df

All measured data contain some amount of noise due to characteristics of the measuring, recording,

and storage equipment. Such noise tends to mask the underlying signal. Averaging of data is often

performed to reduce the influence of such noise on the interpretation of the underlying phenomenon.

While the microgravity environment of Earth-orbiting laboratories is not stationary, there are periods

when the environment does not change significantly. Spectral averaging (point-by-point averaging of

frequency domain spectra) is used to improve the estimation of the spectrum of interest [9].

Welch's Method of spectral averaging is performed by dividing the time period of interest into k

equal length intervals. The PSD of each interval is calculated and the k resulting spectral series are

averaged together on a point-by-point basis. Spectral averaging following Welch's Method not only

reduces the variance of the spectral estimate, but it also tends to smooth the appearance of the spectrum

[10]. As can be seen in Figures 13 and 14, spectral averaging results in data plots that are much easier to

read and interpret. For accelerometer data frequency domain analyses, some understanding of the aspect

of the microgravity environment under investigation (for example, transient thruster firings and

continuous, oscillatory fan operations) helps to define the proper window lengths to use, see [9].

Figures 13 and 14 were computed using SAMS TSH C data from STS-65 for the first five minutes of

the time period shown in Figures 7 and 8. The total time period (T=5.0 min.) is indicated on the top

right corner of Figure 14 and the number of averages this period was divided into is indicated at the top

center of the page (k=9). The 22 Hz frequency component present on all three axes is caused by the

compressor of the LSLE refrigerator/freezer. Recall that the cessation of LSLE vibrations

approximately 450 seconds into Figures 7 and 8 had a marked effect on those two data displays. Other

features of note in Figure 14 are the excitation of Orbiter structural modes below 10 Hz, the 17 Hz

frequency component caused by the dither of the Orbiter Ku-band communications antenna, upper

harmonics of the 17 Hz and 22 Hz disturbances, and several components in the 40 to 100 Hz range with

unknown sources [4].

2.4.2 Cumulative RMS Acceleration versus Frequency

A plot of cumulative RMS acceleration in units of gRMS versus frequency quantifies in cumulative

fashion the contributions of spectral components to the overall RMS acceleration level for the time

frame spanned. Therefore, vertical steps in plots of this type indicate discrete frequencies (or a narrow

band of frequencies) that contribute significantly to the acceleration environment, while plateaus are

indicative of relatively quiet portions of the spectrum. The x-axis cumulative RMS acceleration is

11
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computed as follows:

Xc,,_Ms_ = PSDx ( i)dF k=l,2 ..... L.

Similar expressions exist for the y- and z-axis data. The overall cumulative RMS acceleration as

a function of frequency is computed like so:

= _ 2 + Ycu_ms_ 2 + 2accelcumRMS_ X cu,nRMS_ ZcuraRMS_

Figure 15 shows cumulative RMS acceleration versus frequency plots for the same window of

STS-65 SAMS TSH C data shown in Figure 14. Figure 16 shows the computation for the vector

magnitude (or root-sum-of-squares, RSS) of the three axes of data. From these displays the

microgravity experiment investigator can determine the relative contributions of various disturbances to

the overall microgravity environment. The individual axis displays may be particularly important to an

investigator whose experiment is sensitive to a particular frequency along a defined direction. In the

example of Figure 15, an experiment with an axial sensitivity to 22 Hz vibrations should probably be

aligned such that the sensitive axis is parallel to the Orbiter Xo which shows the minimum effect from
the LSLE.

2.4.3 Root-Mean-Square Acceleration versus Frequency

By dividing the spectrum into k equal-width frequency bands and computing the gaMs level for each

of these bands, we can then plot these values to display the RMS acceleration as a function of frequency.

The width of these bands is defined by the user and the results of this type of analysis can be presented

in tabular or graphical form.

Figure 17 is an example of a gRMS versus frequency display for the same time period as Figure 15.

The RMS levels were computed for consecutive bands of 0.1 Hz width. It is clear that the peaks in

Figure 17 are about the same magnitude as the corresponding steps in Figure 15. This would not

necessarily be the case if different frequency bandwidths were used in the gRidS calculations.

2.4.4 One Third Octave Band RMS Acceleration versus Frequency

This analysis is a specialized version of the graphical representation of gRidS values computed for

specified proportional bandwidth frequency bands. In this case, the (nearly) one third octave bands are

those defined by the International Space Station microgravity requirements, see Table 4 [13]. The

analysis quantifies the RMS acceleration level contributed by each of the one third octave frequency

bands given a 100 second interval. The results of the analysis are typically plotted along with a curve

representing the International Space Station combined vibratory limits to compare the acceleration

environment to these prescribed limits. The one third octave band RMS acceleration is computed as
follows:

12
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I f&ltb(k)
accelRus, = _ RSS(PSDs(i))dF

i= fto,,(k )

k=l,2 ..... 31.

Figure 18 shows an RSS one third octave plot of SAMS data collected by TSH C during STS-65.

Also shown on the plot are the ISS vibratory requirements limits (the bold stair-step line). The strong

RMS level in the one third octave band centered at 25 Hz is primarily due to the LSLE refrigerator/

freezer at about 22 Hz and the excursion in the one third octave band centered at 80.635 Hz is primarily

due to the TEMPUS water pump at about 80 Hz. Figure 19 shows the one third octave RMS

acceleration versus frequency plots for the Xo, Yo, and Zo components of the same data set used to

generate Figure 18. Note that when the ISS requirements are interpreted on a per-axis basis, they

become less stringent.

Table 4.

f,ow(Hz)

0.0891

Table of one third octave frequency bands

fhish ( HZ )

0.1122

0.1122 0.125 0.1413

0.1413 0.16 0.1778

0.1778 0.20 0.2239

0.2239 0.25 0.2818

0.2818 0.3 i 5 0.3548

0.40 0.44670.3548

0.4467 0.50

0.5623 0.63

0.7079 0.80

0.8913 1.00

1.1220 1.25

i.4130 1.6

1.7780 2.00

2.2390 2.5

90.510

0.5623

0.7079

0.8913

1.1220

1.4130

1.7780

2.2390

2.8180

2.8180 3.15 3.5480

3.5480 4.0 4.4670

4.4670 5.0 5.6230

5.6230 6.3 7.0790

7.0790 8.0

8.9130 10.0

8.9130

11.220

101.59

11.220 12.5 14.130

14.130 16.0 17.780

17.780 20.0 22.390

22.390 25.0 28.180

28.180 31.5 35.480

35.480 40.0 44.670

44.670 50.0 56.230

56.230 64.0 71.838

71.838 80.635 90.510

114.04

13
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2.4.5 Power Spectral Density versus Frequency versus Time (Spectrogram)

Spectrograms provide a road map of how acceleration signals vary with respect to both time and

frequency. To produce a spectrogram, PSDs are computed for successive intervals of time. The PSDs

are oriented vertically on a page such that frequency increases from bottom to top. PSDs from

successive time slices are aligned horizontally across the page such that time increases from left to right.

Each time-frequency bin is imaged as a color or grey scale corresponding to the logarithm of the PSD

magnitude at that time and frequency. Spectrograms are particularly useful in identifying when certain

activities begin and end. Figure 20 can be used as an example of how to identify start/termination of an

activity (see 22 and 80 Hz regions of spectrogram) and how the frequency components of an activity can

vary with time (see 22 Hz region of spectrogram).

3. Microgravity Measurement and Analysis Information on the Internet

3.1 Access to OARE and SAMS Data via File Transfer Protocol

After each mission, SAMS and OARE data are available over the internet from the NASA Lewis

Research Center file server beech.lerc.nasa.gov. SAMS data files are typically available 6 to 8 weeks

after raw data files are delivered to SAMS. The estimated availability time for SAMS data is 3 months

after landing. OARE data files are typically available one month after landing.

Files of SAMS data are organized in a tree-like structure. Data acquired from a mission are

categorized based upon sensor head, mission day, and type of data. Data files are stored at the lowest

level in the tree and the file name reflects the contents of the file, Figure 21. For example, the file named

axm00102.15r contains data for TSH A, the x-axis, the time base was Mission Elapsed Time, day 001,

hour 02, 1 of 5 files for that hour, and it contains reduced data. The file readme.doc provides a

comprehensive description and guide to the data.

The OARE TMF data are organized into three files, one each for the Xb-, Yb-, and Zb-axes. The

applicable OARE data are found in the mission directories. Files under the canopus directory are

trimmean filter data, computed by Canopus Systems, Inc. Files under the msfc-raw directory contain the

telemetry data files provided to PIMS by the Marshall Space Flight Center Payload Operations Control

Center data reduction group. Files under the msfc-processed directory are raw files containing binary

floating point values, listing the MET (in hours), and the x, y, and z axis acceleration in micro-g's. See

the readme files for complete data descriptions.

Also available from the file server are some data access tools for different computer platforms.

The overall structure of the beech file server is given in Figure 22. The file server

beech.lerc.nasa.gov can be accessed via anonymous file transfer protocol (ftp), as follows:

14
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a) Establish an ftp connection to the beech file server.

b) Login: anonymous

c) Password: guest

d) Change the directory to pub

e) List the files and directories in the pub directory. There are at least five directories at this level:

OARE, SAMS-MIR, SAMS-SHUTTLE, UTILS, and USERS.

f) Change to the directory of choice.

g) Change the directory to the mission of interest, for example: usml-2

h) List the files and directories for the specific mission chosen in the previous step.

i) Use the data file structure to find the files of interest.

j) Enable binary transfer mode.

k) Transfer the data files of interest.

If you encounter difficulty in accessing the data using the file server, please send an electronic mail

message to the internet address below. Please describe the nature of the difficulty and a description of

the hardware and software you are using to access the file server.

pims@lerc.nasa.gov

Upon request, the PIMS team can provide SAMS data on CD-ROM media. Contact the internet address

above for more information.

3.2 Microgravity Measurement and Analysis WWW Pages

The Principal Investigator Microgravity Services, Space Acceleration Measurement System, and

Orbital Acceleration Research Experiment projects are all part of the NASA Lewis Research Center's

Microgravity Measurements and Analysis Project. More information about these and related projects is

available at the URL given below.

http://www.lerc.nasa.gov/WWW/MMAP

4. Summary

Numerous time and frequency domain analysis techniques have been introduced. Examples of

SAMS and OARE data interpretation using these techniques are given so that microgravity

experimenters are better able to use accelerometer data in experiment planning and in the analysis of

their experimental results.

15
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Figure 4. SAMS acceleration versus time plot. One minute's worth of data.
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in levels starting at 450 seconds was caused by cycling off of LSLE refrigerator/freezer

compressor.
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Figure 8. SAMS data with one-second interval RMS applied. Same ten minutes as plotted in Figure 7.

Note that the LSLE compressor deactivation is more clearly seen in this plot.
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transients are reduced and the effects of water dumps, attitude maneuvers, and jet activity

during crew sleep are more evident in this plot.
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Fmrne of Reference: Orbiter

OARE, TrimmedMca.Filtered MET Start at 006100:04:14.160 t_s
AGHF _perin_nt Location Body Coordinates

OARE Trimmean Filter Data at the AGHF Location
I I I I I

"_ 0-

X

-5 i

0 2

I I I

[I

I I ] I I I I I

4 6 8 10 12 14 16 18

II

:2

I
>.

-5

I I i I I I I I I

d
II

I I I I I I I I I

0 2 4 6 8 10 12 14 16 18

I
t,,t

-5 !
0

I I I I I I I I I

!

I I I I I I I I I

2 4 6 8 10 12 14 16 18

Time (hrs)

Figure 11. OARE data with trimmean filter applied. Same 20 hours of data plotted in Figure 5, here

mapped to the AGHF (Spacelab) location.
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Figure 13. Power spectral density calculated using five minutes of SAMS data. No spectral averaging
used.
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Figure 14. Power spectral density calculated using five minutes of SAMS data. The data were divided

into nine consecutive segments and the PSDs for the nine segments were averaged together

point by point. Compare to Figure 13 which was not averaged.
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Figure 15. SAMS data displayed as cumulative RMS acceleration versus frequency. Same time period

as displayed in Figure 14. Note steps appear in plots at excited frequencies.
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Figure 17. SAMS data displayed as gRMsversus frequency. RMS levels computed for 0.1 Hz wide

bands• Same time period as figures 14-16.
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Figure 19. Three axes of SAMS data plotted as one third octave RMS acceleration versus frequency.

Same time period as Figure 18.
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1) Sensor Head (a,b,c)

2) Axis (x,y,z)

axm00102.15r
00 • 0 _ ®OQ

Im : Mission Elapsed Time
• Jn : Near Mission Elapsed Time

3) Time Reference |r : Russian Time

[g : Greenwich Mean Time

4) Day: 3 digits, with leading zeros

5) Hour: 2 digits, with leading zeros

6) File Number (1,2,3,4,5,6)

7) Total number of files per hour (1,2,4,5,6)

(if: Reduced acceleration data
8) Type of data in file" Gain setting information

Temperature data

Figure 21. SAMS data naming convention.
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Figure 22. Accessing Acceleration Data via the Internet from beech.lerc.nasa.gov
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